ACADEMIA
Keeping Electronics Cool
Findings on modified form of graphene could have impacts in managing heat dissipation in everything from electronics to photovoltaic solar cells to radars
A University of California, Riverside engineering professor and a team of researchers have made a breakthrough discovery with graphene, a material that could play a major role in keeping laptops and other electronic devices from overheating.
Alexander Balandin, a professor of electrical engineering at the UC Riverside Bourns College of Engineering, and researchers from The University of Texas at Austin, The University of Texas at Dallas and Xiamen University in China, have shown that the thermal properties of isotopically engineered graphene are far superior to those of graphene in its natural state.
The research efforts were led by the Professor Rodney S. Ruoff of UT Austin and Balandin, a corresponding author for the paper, “Thermal conductivity of isotopically modified graphene.” It was published online Jan. 8 by the journal Nature Materials and will later appear in the print publication.
The results bring graphene – a single-atom thick carbon crystal with unique properties, including superior electrical and heat conductivity, mechanical strength and unique optical absorption – one step closer to being used as a thermal conductor for managing heat dissipation in everything from electronics to photovoltaic solar cells to radars.
“The important finding is the possibility of a strong enhancement of thermal conduction properties of isotopically pure graphene without substantial alteration of electrical, optical and other physical properties,” Balandin said. “Isotopically pure graphene can become an excellent choice for many practical applications provided that the cost of the material is kept under control.”
He added: “The experimental data on heat conduction in isotopically engineered graphene is also crucially important for developing an accurate theory of thermal conductivity in graphene and other two-dimensional crystals.”