Nanoscale Computing Circuits Named Top Scientific Advance of ‘01 by ‘Science’

The nanocircuits, named the Breakthrough of the Year by Science's editors, leads their list of the top ten scientific developments in 2001. The top ten, chosen for their profound implications for society and the advancement of science, appear in the journal's 21 December issue. This year's leap forward for molecular computing may pave the way to a future filled with tiny but extremely fast and powerful machines that can translate conversations on the fly or delve deep into your body to diagnose an illness. If these circuits can be combined into even more complex architecture, this would "undoubtedly provide computing power to launch scientific breakthroughs for decades to come," say the Science editors. The idea of using molecules and small chemical groups as the building blocks of a new generation of computers has been around for years. The quest has become more urgent over the last decade, however, as traditional silicon circuitry continues to shrink towards a point where it can no longer function. Researchers hope to skirt this problem by using molecules and small chemical groups to create billions of devices that could fit easily in the space of a current chip. After expanding their repertoire of molecular-scale devices in 2000, several research teams took the next critical step and wired the devices together to form working circuits. Several papers published in Science this year detail the progress from communicating nanowires (26 January 2001) to nanotube and nanowire-based logic circuits (9 November 2001) to computational circuits using single-molecule transistors (8 November 2001, Science Express). Molecular computers with the speed, reliability, and low cost of silicon computers are still years away, but this year's Breakthrough has researchers charged up about the future.