ACADEMIA
Harvests in the US to suffer from climate change
- Written by: Tyler O'Neal, Staff Editor
- Category: ACADEMIA
“We know from observations that high temperatures can harm crops, but now we have a much better understanding of the processes,” says Bernhard Schauberger from the Potsdam Institute for Climate Impact Research, lead author of the study. “The [super]computer simulations that we do are based on robust knowledge from physics, chemistry, biology; on a lot of data and elaborate algorithms. But they of course cannot represent the entire complexity of the crop system, hence we call them models. In our study they have passed a critical test.” The scientists compare the model results to data from actual observations. This way, they can find out if they include the critical factors into their calculations, from temperature to CO2, from irrigation to fertilization.
Without efficient emission reductions, yield losses of 20 percent for wheat are possible by 2100
For every single day above 30°C, maize and soybean plants can lose about 5 percent of their harvest. The simulations have shown that the models capture how rather small heat increases beyond this threshold can result in abrupt and substantial yield losses. Such temperatures will be more frequent under unabated climate change and can severely harm agricultural productivity. Harvest losses from elevated temperatures of 20 percent for wheat, 40 percent for soybean and almost 50 percent for maize, relative to non-elevated temperatures, can be expected at the end of our century without efficient emission reductions. These losses do not even consider extremely high temperatures above 36°C, which are expected to lower yields further.
The effects go far beyond the US, one of the largest crop exporters: world market crop prices might increase, which is an issue for food security in poor countries.
Irrigation could be a means for adaptation - yet only in regions where there's sufficient water
When water supply from the soil to the plant decreases, the small openings in the leaves gradually close to prevent water loss. They thereby preclude the diffusion of CO2 into the cells, which is an essential building material for the plants. Additionally, crops respond to water stress by increasing root growth at the expense of above-ground biomass and, eventually, yields.
Burning fossil fuels elevates the amount of CO2 in the air. This usually increases the water use efficiency of plants since they lose less water for each unit of CO2 taken up from the air. However, this cannot be confirmed as a safeguard of yields under high temperatures, the scientists argue. The additional CO2 fertilization in the simulations does not alleviate the drop in yields associated with high temperatures above about 30°C.
The comparison of different supercomputer simulations of climate change impacts is at the heart of the ISIMIP project (Inter-Sectoral Impacts Modelling Intercomparison Project) comprising about 100 modeling groups worldwide. The simulations are generated in cooperation with AgMIP, the international Agricultural Model Intercomparison and Improvement Project.