SDSC Dashes Forward with New Flash Memory Computer System - Page 2

“Dash’s use of flash memory for fast file-access and swap space – as opposed to spinning discs that have much slower latency or I/O times – along with vSMP capabilities for large shared memory will facilitate scientific research,” said Michael Norman, interim director of SDSC. “Today’s high-performance instruments, simulations and sensor networks are creating a deluge of data that presents formidable challenges to store and analyze, challenges that Dash helps to overcome.”

For example, Dash will have the capability to search sky survey data for near-earth asteroids and brown dwarfs that may help researchers better understand periodic extinctions on Earth, and it will speed up investigations to establish relationships among species based on their genes. Such research not only could yield new information regarding evolution, but help biomedical researchers mine these complex data sets for clues to develop new drugs or cures for a variety of diseases.

“Dash can do random data accesses one order-of-magnitude faster than other machines,” said Allan Snavely, associate director at SDSC. “This means it can solve data-mining problems that are looking for the proverbial ‘needle in the haystack’ more than 10 times faster than could be done on even much larger supercomputers that still rely on older ‘spinning disk’ technology.”

Dash is currently being tested but soon will be made available to users of the TeraGrid, the nation’s largest open-access scientific discovery infrastructure, for evaluation and development of application codes that can take advantage of flash memory and virtual “supernodes” technology. For additional information about access and allocations, see www.teragrid.org.