Astronomer employs supercomputing to peer into cosmic mysteries - page 2

Supercomputing centers such as OSC allow astronomers to create extremely sophisticated models that are not feasible on desktop systems. However, even with supercomputers, Kazantzidis and his colleagues find that simulating the multitude of elements involved in these galactic processes remains an enormous challenge.

“Our models can only follow a small subset of, say, the stars in a galaxy,” he explained. “For example, a galaxy like our Milky Way contains hundreds of billions of stars, and even the most sophisticated numerical simulations to date can only simulate a tiny fraction of this number. The situation becomes increasingly more difficult in simulations that involve dark matter. This is because the dark matter particle is an elementary particle and, therefore, it is much less massive than a star. A galaxy like the Milky Way contains of the order of 1067 dark matter particles (that is, the number one followed by 67 zeros).”

The goal of Kazantzidis’ team is to develop representations of galaxies that are as accurate as possible. Access to the Glenn Cluster increases the number of objects (or simulation particles) that can be depicted in the model, enhancing their ability to perform accurate and meaningful calculations.

“The powerful hardware and software available at OSC are particularly well-suited for cutting-edge astronomy research, such as that being conducted by Dr. Kazantzidis,” said Ashok Krishnamurthy, interim co-executive director and director of research at OSC. “The results he and his colleagues have been able to achieve through their research projects are impressive and firmly demonstrate the Center’s ability to help accelerate innovation and discovery.”
 

SMBH Pic
Gas density maps that correspond to just before and after the orbit of a secondary supermassive black hole enters the disk of the primary galaxy.

 

Dwarf  Picture

Three-panel surface density maps from three different simulations of the final stellar configurations of dwarf galaxies.

 

Dwarf  Picture 2

A surface density map of the stellar distribution of a dwarf galaxy, with a line indicating the center of the host galaxy.